Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four
نویسندگان
چکیده
In this article we consider the class QSL4 of all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and a finite set of singularities at infinity. We first prove that all the systems in this class are integrable having integrating factors which are Darboux functions and we determine their first integrals. We also construct all the phase portraits for the systems belonging to this class. The group of affine transformations and homotheties on the time axis acts on this class. Our Main Theorem gives necessary and sufficient conditions, stated in terms of the twelve coefficients of the systems, for the realization of each one of the phase portraits found. We prove that these conditions are invariant under the group action. Résumé Dans cet article nous considérons la classe QSL4 de tous les systèmes différentiels quadratiques dx dt = p(x, y), dy dt = q(x, y) avec gcd(p, q) = 1, ayant des droites invariantes de multiplicité totale quatre et un nombre fini de points singuliers a l’infini. Nous prouvons d’abord que tous les systèmes dans cette classe sont intégrables ayant des facteurs intégrants qui sont des fonctions Darboux et nous déterminons leurs intégrales premières. Nous construisons aussi tous les portraits de phase des systèmes apartenant à cette classe. Le groupe des transformations affines et des homothéties sur l’axe du temps agit sur cette classe. Notre Théorème Principal donne des conditions nécessaires et suffisantes, formulées en termes des douze coefficients des systèmes, pour la réalisation de chacun des portraits de phase trouvé. Nous prouvons que ces conditions sont invariantes sous l’action du groupe.
منابع مشابه
Quadratic Systems with Invariant Straight Lines of Total Multiplicity Two Having Darboux Invariants
In this paper we present the global phase portraits in the Poincaré disc of the planar quadratic polynomial systems which admit invariant straight lines with total multiplicity two and Darboux invariants.
متن کاملIntegrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity
In this article we prove that all real quadratic differential systems dx dt = p(x, y), dy dt = q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity at least five and a finite set of singularities at infinity, are Darboux integrable having integrating factors whose inverses are polynomials over R. We also classify these systems under two equivalence relations: 1) topological ...
متن کاملPlanar quadratic differential systems with invariant straight lines of the total multiplicity 4 Dana
In this article we consider the action of affine group and time rescaling on planar quadratic differential systems. We construct a system of representatives of the orbits of systems with four invariant lines, including the line at infinity and including multiplicities. For each orbit we exhibit its configuration. We characterize in terms of algebraic invariants and comitants and also geometrica...
متن کاملPlanar quadratic vector fields with invariant lines of total multiplicity at least five
In this article we consider the action of affine group and time rescaling on planar quadratic differential systems. We construct a system of representatives of the orbits of systems with at least five invariant lines, including the line at infinity and including multiplicities. For each orbit we exhibit its configuration. We characterize in terms of algebraic invariants and comitants and also g...
متن کاملGlobal Phase Portraits of Quadratic Systems with an Ellipse and a Straight Line as Invariant Algebraic Curves
In this paper we study a new class of integrable quadratic systems and classify all its phase portraits. More precisely, we characterize the class of all quadratic polynomial differential systems in the plane having an ellipse and a straight line as invariant algebraic curves. We show that this class is integrable and we provide all the different topological phase portraits that this class exhi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006